Appendix C – Noise Modeling

This appendix includes:

- Appendix C.1 Flight Profile Analysis Memorandum supporting the choice of available flight profiles in the Aviation Environmental Design Tool (AEDT).
- Appendix C.2 Noise Modeling Input Memorandum reviewed by GIAA.

Appendices C-1

This page intentionally blank.

C.1 Flight Profile Analysis Memorandum

This page intentionally blank.

700 District Avenue, Suite 800 Burlington, MA 01803 781.229.0707

TECHNICAL MEMORANDUM

To: Audie Artero, Engineering Supervisor, A.B. Won Pat Guam Intl Airport

From: Robert Mentzer, Project Manager, Principal Consultant

Kevin Parker, Assistant Project Manager, Staff Consultant

Gene Reindel, Principal in Charge

Date: 1/18/2024

Subject: A.B. Won Pat International Airport Part 150 Update

Flight Profile Analysis Memorandum

Reference: HMMH Project Number 22-0212A

As part of the AECOM team, Harris Miller Miller & Hanson Inc. (HMMH) is assisting Guam International Airport Authority (GIAA) with the aircraft noise modeling element of the A.B. Won Pat Guam International Airport Part 150 Airport Noise Compatibility Program (Part 150) update. The purpose of this technical memorandum is to summarize the flight profile analysis to support the noise modeling input for the Noise Exposure Map (NEM) existing (2024) and forecast (2029) conditions. HMMH will use the Federal Aviation Administration (FAA) Aviation Environmental Design Tool (AEDT), Version 3f¹, to generate aircraft noise exposure contours for the NEM existing and forecast conditions. Therefore, the radar data profile evaluation compares to profile data developed from the AEDT 3f database for A.B. Won Pat Guam International Airport.

HMMH evaluated four of the main AEDT aircraft types in use at the Airport and determined that all U.S. based carriers typically use STANDARD profiles, and all international carriers typically use International Civil Aviation Organization (ICAO)-A profiles. Therefore, the noise modeling for the Airport includes ICAO-A flight profiles for all international airline operations for types with that profile available. Further details of this analysis are presented below.

1.0 Aircraft Selection

HMMH obtained flight track and aircraft identification data from FlightAware for the 12-month period from July 2022 to June 2023 that represented civilian (AC, AT, GA) operations. This data was used to develop the existing fleet mix and stage length data. The radar operations data were compared to the FAA tower counts for the same period. The fleet mix in the same categories were then scaled to the FAA approved Master Plan forecasts for 2024 and 2029.² Additional details on this process can be found in the "Aircraft Noise Modeling Input Memorandum."

The study team selected AEDT types with available radar data that represented the highest operations expected at the Airport within the five-year timeframe and types that represented both passenger and cargo jet operations. **Table 1** presents the four selected AEDT types and their modeled level of operations for 2024 and 2029.

¹ Released December 15, 2023. https://aedt.faa.gov/3f information.aspx

² FAA approved the use of the Master Plan forecast for the Part 150 Update.

The four AEDT types selected were:

- Boeing 737-800 Passenger United and International airline operations
- Boeing 747-400 Cargo U.S. and International airline operations
- Boeing 777-300ER Passenger United and International airline operations
- Airbus 321-232 Passenger International airline operations

Table 1. Selected AEDT Type Modeled Average Annual Day Operations

Source: GIAA Master Plan 2023

Vaar	Engine	AEDT	Arri	vals	Depa	rtures	Lo	cal	Total
Year	Туре	Type	Day	Night	Day	Night	Day	Night	iotai
	737800	14.4	6.9	16.8	4.5	1.2	-	43.9	
2024	lat	747400	0.2	<0.1	0.2	<0.1			0.3
2024	Jet	7773ER	2.5	0.3	2.3	0.6			5.8
		A321-232	0.6	1.9	0.7	1.8		-	5.1
		737800	17.3	8.3	20.2	5.4	1.9		53.0
2029	Jet	747400	0.2	<0.1	0.2	<0.1	1		0.4
2029	Jet	7773ER	3.1	0.4	2.8	0.7		-	6.9
		A321-232	0.8	2.3	0.9	2.2			6.1

2.0 AEDT Flight Profiles

AEDT requires the use of specific flight performance data for each aircraft type operating at the Airport. Performance data include thrust, speed, and altitude profiles for takeoff, landing, and flight pattern operations. For departures, AEDT has STANDARD and ICAO aircraft flight profiles for many aircraft types, and each aircraft type may have multiple departure flight profiles representing specific ranges of takeoff weights.

AEDT uses departure "stage length" (the flight distance between the departure and arrival airport) as a surrogate for aircraft departure weight, since fuel load is the largest factor affecting variation in aircraft weight and therefore climb performance. AEDT includes performance profiles for most commercial aircraft types for a range of stage length values. **Table 2** provides the stage length classifications in AEDT by their associated trip distances.

Table 2. AEDT Stage Length Categories

Source: AEDT 3f User Guide, December 2023

Category	Stage Length (nmi)					
1	0-500					
2	500-1,000					
3	1,000-1,500					
4	1,500-2,500					
5	2,500-3,500					
6	3,500-4,500					
7	4,500-5,500					
8	5,500-6,500					
9	6,500-11,000					
M	Maximum range at maximum takeoff weight					
Note: Stage Length is defined as the dis	tance an aircraft travels from takeoff to landing					

The stage lengths determined for the Airport operations were based on the city-pair analysis of the 12-month radar data sample. **Table 3** indicates the proportion of the operations that fell within each of the stage length categories split by airline for day and night periods. Typically, widebody aircraft which operate on long haul routes have higher stage lengths.

Table 3. Departure Stage Length Usage for Selected Aircraft

Source: FlightAware

Time of	Airline A	AFDT Town				Stage I	Length				Total
Day	Airline	AEDT Type	1	2	3	4	5	6	7	8	Total
	United Airlines	737800	18%	15%	66%	1%	0%	0%	0%	0%	100%
	United Airlines	7773ER	0%	0%	0%	29%	64%	0%	6%	<1%	100%
	Jeju Air	737800	0%	0%	28%	72%	0%	0%	0%	0%	100%
	Jin Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Korean Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
Day		7773ER	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Philippine Airlines	A321-232	0%	0%	100%	0%	0%	0%	0%	0%	100%
	T'way Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Air Seoul	A321-232	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Japan Airlines	737800	0%	0%	100%	0%	0%	0%	0%	0%	100%
		747400	0%	0%	0%	46%	46%	0%	7%	0%	100%
	United Airlines	737800	6%	32%	58%	3%	<1%	0%	0%	0%	100%
	Onited Airlines	7773ER	0%	0%	0%	12%	85%	0%	3%	0%	100%
	Jeju Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Jin Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
Night	Korean Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Philippine Airlines	A321-232	0%	0%	100%	0%	0%	0%	0%	0%	100%
	T'way Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Other	747400	49%	0%	0%	51%	0%	0%	0%	0%	100%

Note: Not all airlines and types have day and night operations.

It is important to note that AEDT has a database of representative flight profiles that represent average stage length weight and flight conditions. These profiles are adjusted in the model based on runway gradient and weather conditions for the Airport in the model. Whereas the radar data profiles represent the conditions flown on that day, the weight of the aircraft, and pilot operating procedures. The goal of this analysis is to select the most representative flight profile for each set of operations.

3.0 Boeing 737-800 Analysis

The Boeing 737-800 has the highest operations, representing 71 percent of all Air Carrier passenger operations at the Airport. The aircraft type is flown by United mostly on shorter Stage length 1-3 flights and by international airlines operating Stage length 3-4 flights. Stage length 4 operations represent the highest level of operations by the 737-800 at the Airport, and these operations are mainly flown by International airlines as shown in **Figure 1**. The AEDT ICAO-A flight profile is the best match to the radar data flight profiles, especially below 3,000 feet in altitude.

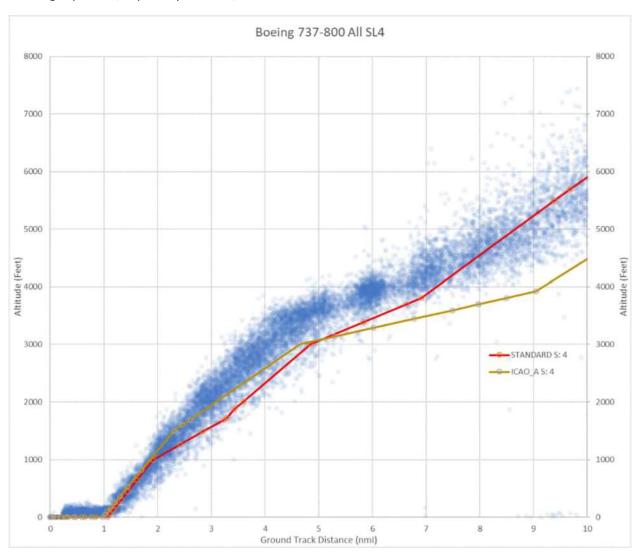


Figure 1. Boeing 737-800 Stage Length 4 Departures

Figure 2 displays the Stage length 3 737-800 departure flight profiles, which are a mixture of United and International airlines; however, United operations are the bulk of these departures, and the Standard profile best represents the United departures.

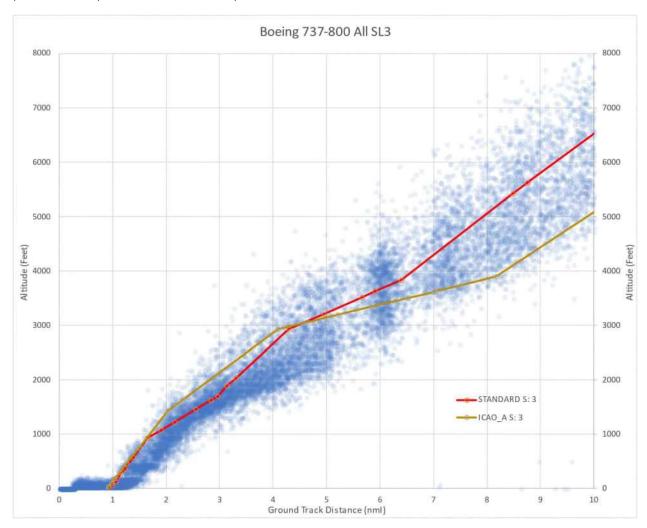


Figure 2. Boeing 737-800 Stage Length 3 Departures

4.0 Boeing 747-400 Analysis

The Boeing 747-400 is flown by U.S. and International cargo operators at the Airport. The aircraft type is flown by UPS and Atlas Air mostly on Stage length 4 and 5 flights.

Figure 3 displays the Stage length 4 747-400 departure flight profiles, and as shown, the Standard profile best represents the U.S. airline operations. It is mainly international cargo airlines that match the ICAO-A profile shown in the figure.

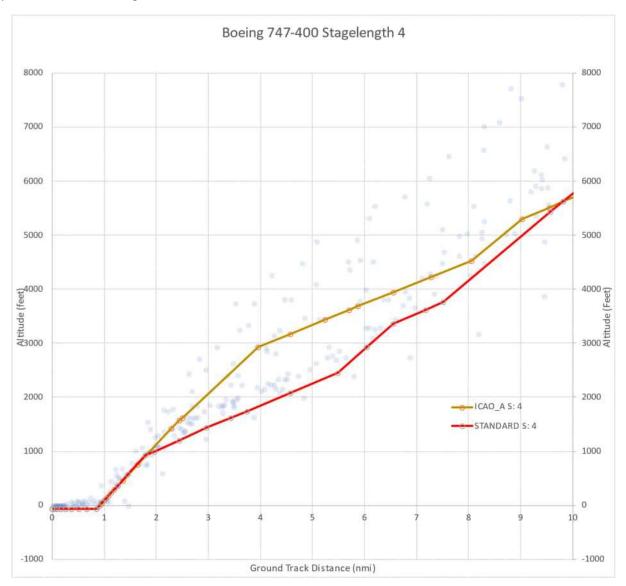


Figure 3. Boeing 747-400 Stage Length 4 Departures

Figure 4 displays the Stage length 5 747-400 departure flight profiles, and similar to the Stage length 4 profiles, the Standard profile matches the majority of departures.

Figure 4. Boeing 747-400 Stage Length 5 Departures

5.0 Boeing 777-300ER Analysis

The Boeing 777-300ER is flown by United and Korean Air at the Airport mostly on Stage length 4, 5 and 7 flights.

Figure 5 displays the Stage length 4 777-300ER departure flight profiles which is a mixture of United and Korean Air flight, and as shown, the Standard profile best represents the United operations and ICAO-A for Korean Air.

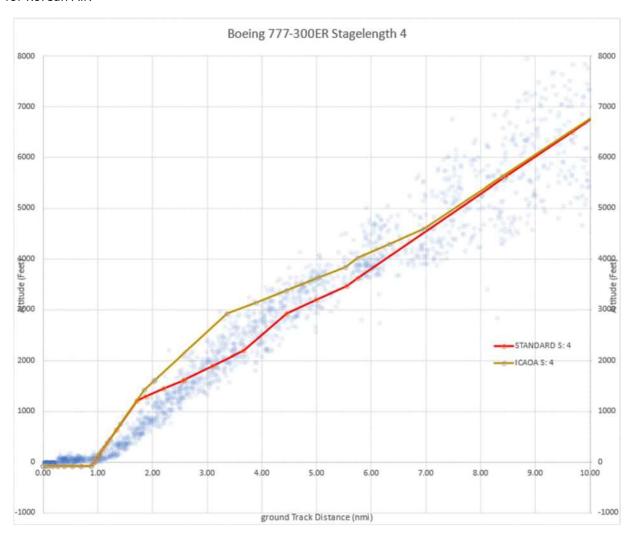


Figure 5. Boeing 777-300ER Stage Length 4 Departures

Figure 6 displays the Stage length 5 777-300ER departure flight profiles which are all United operations, and the Standard profile matches the majority of departures. Stage length 7 operations are also United and are not shown here but follow the same trend matching the Standard profile.

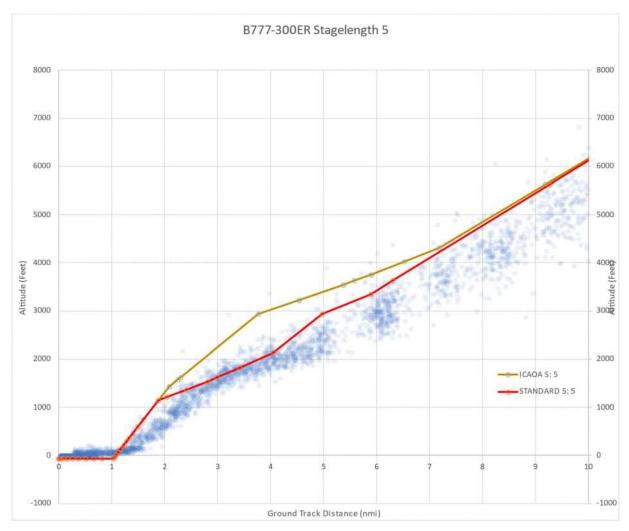


Figure 6. Boeing 777-300ER Stage Length 5 Departures

6.0 Airbus A321-232 Analysis

The Airbus A321-232 is flown by International airlines at the Airport, primarily Philippines Airlines, mostly on Stage length 3 and 4 flights.

Figure 7 displays the Stage length 3 A321-232 departure flight profiles which is a mixture of Philippine Airlines A321 and A321-Neo aircraft types. They are both modeled as the A321-232 in AEDT and the ICAO-A profile is the best representation of the data.

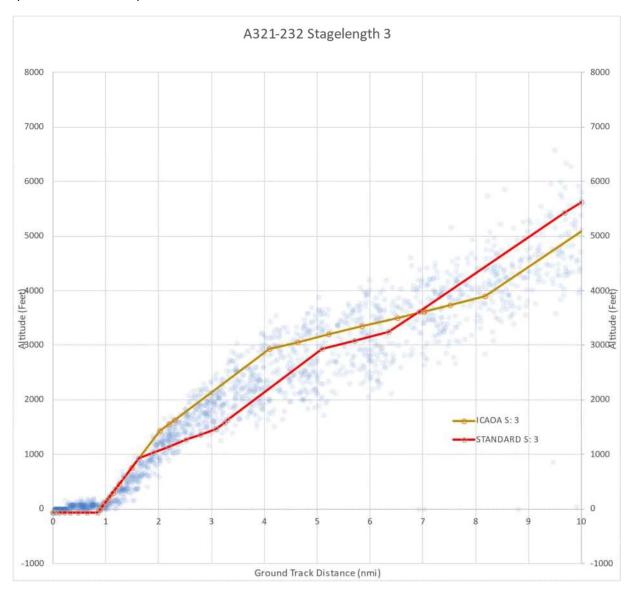


Figure 7. Airbus A321-232 Stage Length 3 Departures

Figure 8 displays the Stage length 4 A321-232 departure flight profiles which are all Philippines Airlines A321 operations, and the ICAO-A profile matches the majority of departures.

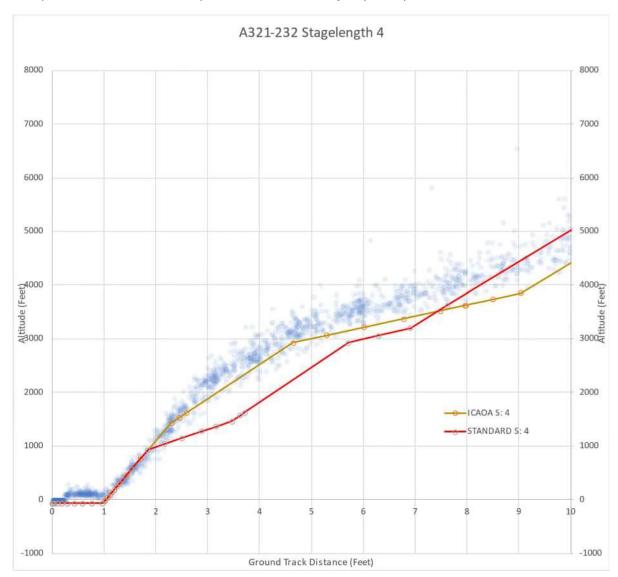


Figure 8. Airbus A321-232 Stage Length 4 Departures

This page intentionally blank.

C.2 Noise Modeling Input Memorandum

This page intentionally blank.

700 District Avenue, Suite 800 Burlington, MA 01803 781.229.0707

TECHNICAL MEMORANDUM

To: Audie Artero, Engineering Supervisor, A.B. Won Pat Guam Intl Airport

From: Gene Reindel, Principal in Charge

Robert Mentzer, Project Manager, Principal Consultant Kevin Parker, Assistant Project Manager, Staff Consultant

Date: 1/5/2024

Subject: A.B. Won Pat International Airport Part 150 Update

Aircraft Noise Modeling Input Memorandum

Reference: HMMH Project Number 22-0212A

As part of the AECOM team, Harris Miller Miller & Hanson Inc. (HMMH) is assisting Guam International Airport Authority (GIAA) with the aircraft noise modeling element of the A.B. Won Pat Guam International Airport Part 150 Airport Noise Compatibility Program (Part 150) update. The purpose of this technical memorandum is to summarize the baseline (12-month period from July 2022 to June 2023 and *to seek concurrence from GIAA* with the noise modeling input for the Noise Exposure Map (NEM) existing (2024) and forecast (2029) conditions as provided and described herein.

GIAA reviewed the technical memorandum and provided agreement on December 19, 2023. Since then, the memorandum has been updated to reflect the use of AEDT 3f and additional documentation is provided on the use of AEDT STANDARD and ICAO_A profiles in the model.

HMMH will use the Federal Aviation Administration (FAA) Aviation Environmental Design Tool (AEDT), Version 3f¹, to generate aircraft noise exposure contours for the NEM existing and forecast conditions. The subsequent sections describe the AEDT required noise modeling inputs for each condition, which include:

- Physical description of the airport layout
- Aircraft operations
- Aircraft noise and performance characteristics
- Runway utilization
- Flight track geometry and use
- Meteorological conditions
- Terrain data

1.0 Physical Description of the Airport Layout

The Airport is located approximately three miles east of the capital city of Hagåtña (formerly Agana) in the United States territory of Guam. The airport layout is comprised of two runways, Runway 6L/24R and Runway 6R/24L. **Figure 1** shows the current airport diagram and **Table 1** provides the runway specifications used in modeling aircraft noise exposure.

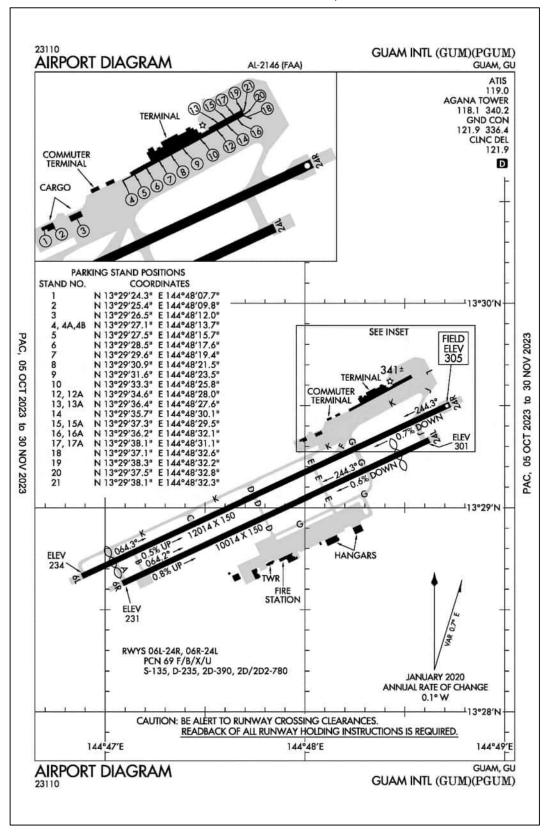
The number used to designate each runway end reflects, with the addition of a trailing "0", the magnetic heading of the runway to the nearest 10 degrees from the perspective of the pilot. Runway 6L/24R is oriented along approximate magnetic headings of 64° and 244° and is 12,014 feet long by 150 feet wide. Runway 6R/24L is oriented along approximate magnetic headings of 64° and 244° and is 10,014 feet long by 150 feet wide.

-

¹ Released December 15, 2023. https://aedt.faa.gov/3f information.aspx

Runway length, runway width, instrumentation, and declared distances affect which runway an aircraft will use and under what conditions, and therefore, will determine the rate of utilization of a runway relative to the other runways at the airport.

Table 1. Runway Specifications


Source: GIAA Master Plan 2023, FAA 5010 Data. Accessed on Oct. 13th, 2023

Runway End	Latitude	Longitude	Elevation (ft MSL)	Length (ft)	Approach Angle (degrees)	Threshold Crossing Height (ft)	Displaced Thresholds (ft)				
6L	13-28.6643N	144-46.8853E	233.7	12,014	3.0	55	1,000				
24R	13-29.5051N	144-48.7242E	305.0	12,014	3.0	75	N/A				
6R	13-28.6295N	144-47.0888E	231.0	10,014	3.0	57	N/A				
24L	13-29.3303N	144-48.6213E	301.0	10,014	3.0	55	1,004				
Note: 6L, 6	Note: 6L, 6R Threshold Crossing Height (TCH) from ILS and 24L, 24R TCH from RNAV Y Approach										

We have discussed the existing layout with the Master Plan consultant (AECOM) and GIAA and do not expect any changes to the runway layout within the five-year Part 150 update time period. Therefore, the same runway specifications will be used for the existing and forecast condition modeling used for the preparation of the Noise Exposure Maps.

Figure 1. Airport Diagram

Source: FAA. Accessed on October 13th, 2023

2.0 Airport Operations

FAA organizes aircraft operations into categories per FAA Order 7210.3 "Facility Operation and Administration"; namely Air Carrier (AC), Air Taxi (AT), General Aviation (GA), and Military (ML). AC and AT are commercial categories distinguished by aircraft capacity, while GA includes all non-commercial, non-military operations. FAA personnel at the airports ATCT provide counts of operations that are reported by FAA's OPSNET (tower counts) and then used in preparation of the FAA's Terminal Area Forecast (TAF).

HMMH obtained flight track and aircraft identification data from FlightAware for the 12-month period from July 2022 to June 2023 that represented civilian (AC, AT, GA) operations. This data was used to develop the existing fleet mix, day/night split, stage lengths, runway use and modeled flight tracks. The radar operations data were compared to the FAA tower counts for the same period. The fleet mix in the same categories were then scaled to the FAA approved Master Plan forecasts for 2024 and 2029². Most military operations were not available in the radar data sample, therefore FAA Traffic Flow Management System Counts (TFMSC) for the same 12-month period were obtained and used to develop the military fleet mix operating at the airport.

Table 2 presents the total annual operations for 2022, the data collection period (7/22-06/23), and 2024 and 2029 in accordance with the 2023 Master Plan³.

Table 2. Operation Counts by Tower Category

Sources: FlightAware, FAA OPSNET, GIAA Master Plan 2023

	ITINERANT								
Year	Air	Air Taxi	General	Military	Total	Civil	Military	Total	Total
	Carrier		Aviation						Operations
2022	10,501	968	7,830	930	20,229	14,123	643	14,766	34,995
07/22 – 06/23	13,790	1,489	8,806	992	25,077	17,045	688	17,733	42,810
MP 2024	22,062	3,842	16,538	927	43,369	15,592	1,000	16,592	59,960
MP 2029	26,512	4,331	26,951	927	58,721	23,933	1,000	24,933	83,655

Note: Totals may not match exactly due to rounding.

MP – Master Plan 2023

The derivation of the fleet mix utilized existing aircraft operations at the Airport and included air carrier, air taxi, general aviation, and itinerant military operations. The operations described below comprise the existing and forecast conditions for submittal of the Part 150 update. The aircraft operations data entered into AEDT includes the number of day and night arrivals, departures, and pattern (circuit) operations.

Pattern (circuit) operations are local pattern operations modeled on closed-circuit flight paths, which are flight tracks that depart and turn into a downwind pattern before landing back on the same runway. It should be noted that a "local" operation departs and lands at the Airport rather than going to or arriving from another airport, but a local operation is not necessarily a closed-circuit flight path. Any aircraft that arrives and departs from the same airport but uses a different runway end or flies a different path than a unidirectional turn would be considered a "local" operation, but not a closed-circuit flight path. The Airport has skydive operations which are considered local flights but due to the altitudes obtained will be modeled as departures and arrivals for this analysis. Japan Airlines also conducts training at the Airport

² FAA approved the use of the Master Plan forecast for the Part 150 Update.

³ Antonio B. Won Pat International Airport Master Plan Update, October 2023

and those local operations and circuit tracks have been included. For the purposes of this analysis, all other local operations are modeled as circuits.

Table 3 provides the average daily operations, by aircraft type, that were developed for the baseline. The average daily number of aircraft arrivals, departures and circuits for the baseline are calculated by determining the total annual operations and dividing by 365 (days in a year). The baseline average annual day (AAD) operations included 117 total operations, 11.4 percent of which occurred during the nighttime hours of 10:00 p.m. to 6:59 a.m. per the definition of the FAA-required noise compatibility metric of DNL or the Day-Night Average Sound Level.

The operations for the existing condition and forecast condition were scaled based on the future operational levels in the Master Plan forecast. The fleet mix was adjusted based on future trends for 2024 and 2029 (e.g. United 777-200 operations were shifted to 777-300ER types for both years). **Table 4** and **Table 5** list the same operations information for the existing (2024) and forecast condition (2029) operations.

Table 3. Baseline (July 2022- June 2023) Average Annual Day OperationsSource: FlightAware

Category	Engine	AEDT	Arri	vals	Depai	rtures	Lo	cal	Total
	Туре	Туре	Day	Night	Day	Night	Day	Night	
		737800	8.8	4.2	10.2	2.7	1.3		27.3
		7378MAX	<0.1		<0.1				<0.1
		747400	0.1	<0.1	0.1	<0.1			0.3
		7478	0.1		<0.1	<0.1	-	1	0.1
		757PW	0.8	<0.1	0.7	0.2	1	1	1.6
	Jet	7673ER	0.1		0.1				0.3
Air	Jet	777200	0.4	<0.1	0.3	<0.1			0.7
Carrier		7773ER	1.4	0.2	1.3	0.3	1	1	3.1
		A321-232	0.4	1.2	0.4	1.1	1	-	3.1
		A330-301	0.8	<0.1	0.8	<0.1	1	-	1.6
		MD11GE	0.1	-	<0.1	0.1	1	1	0.2
		MD11PW	<0.1	<0.1	<0.1	<0.1	1	1	<0.1
	Turboprop	C130	<0.1	<0.1	<0.1	<0.1	1	I	<0.1
	Subt	Subtotal		5.8	14.3	4.6	1.3	1	39.1
	Jet	FAL900EX	<0.1	<0.1	<0.1	<0.1	1	I	<0.1
	Jet	GIIB	<0.1	<0.1	<0.1	<0.1			<0.1
Air Taxi	Turboprop	CNA208	0.6		0.6	<0.1			1.3
	Piston	BEC58P	1.3	<0.1	1.3	<0.1			2.6
	Subtotal		2.0	<0.1	2.0	<0.1			4.0
		CNA55B	<0.1		<0.1	<0.1			<0.1
	Jet	CNA680	<0.1		<0.1				<0.1
	Jet	GV	0.2	<0.1	0.2	<0.1			0.3
		LEAR35	0.2	<0.1	0.2	<0.1			0.4
General	Turboprop	CNA208	5.7		5.4	0.3	15.9	0.3	27.6
Aviation		BEC58P	3.4	<0.1	3.5	<0.1			6.9
	Piston	CNA172	1.3	<0.1	1.3	<0.1	15.4	<0.1	18.0
	Fiston	GASEPF	0.1		0.1	<0.1	13.7	<0.1	13.9
		GASEPV	1.0		1.0				2.0
	Subt	otal	12.0	0.1	11.6	0.4	45.0	0.4	69.5
		767300	<0.1	<0.1	<0.1				<0.1
		767CF6	<0.1	<0.1	<0.1	<0.1			<0.1
	Jet	777200	<0.1	<0.1	<0.1	<0.1			<0.1
Military		F16PW0	0.9		0.9		1.7		3.6
		F-18	0.1		0.1		0.1		0.4
	Turboprop	C130AD	0.2		0.2			-	0.3
Subtotal		1.3	<0.1	1.3	<0.1	1.9		4.5	
	Total			6.0	29.2	5.1	48.2	0.4	117.3

Table 4. Modeled 2024 Average Annual Day Operations

Source: GIAA Master Plan 2023

	Engine	AEDT	Arri	vals	Depa	rtures	Lo	cal	
Category	Туре	Туре	Day	Night	Day	Night	Day	Night	Total
		737800	14.4	6.9	16.8	4.5	1.2		43.9
		7378MAX	<0.1	-	<0.1				<0.1
		747400	0.2	<0.1	0.2	<0.1			0.3
		7478	0.1		<0.1	<0.1			0.1
		757PW	0.8	0.1	0.7	0.2			1.8
	1	7673ER	0.2		0.2				0.4
Air	Jet	777200	0.3	<0.1	0.4	<0.1			0.7
Carrier		7773ER	2.5	0.3	2.3	0.6			5.8
		A321-232	0.6	1.9	0.7	1.8			5.1
		A330-301	1.4	<0.1	1.3	<0.1			2.7
		MD11GE	0.1		<0.1	0.1			0.2
		MD11PW	<0.1	<0.1	<0.1	<0.1			<0.1
	Turboprop	C130	<0.1	<0.1	<0.1	<0.1			<0.1
	Subt	total	20.8	9.4	22.8	7.4	1.2	-	61.7
	1-4	FAL900EX	<0.1	<0.1	<0.1	<0.1			<0.1
	Jet	GIIB	<0.1	<0.1	<0.1	<0.1			<0.1
Air Taxi	Turboprop	CNA208	0.1		0.1	<0.1			0.2
	Piston	BEC58P	0.2	<0.1	0.2	<0.1			0.5
	Subtotal		0.4	<0.1	0.4	<0.1	-		0.7
		CNA55B	<0.1		<0.1	<0.1		-	<0.1
	lot	CNA680	<0.1	-	<0.1	-	-	1	<0.1
	Jet	GV	0.5	0.1	0.5	0.2	1	1	1.3
		LEAR35	0.6	<0.1	0.6	<0.1	1	1	1.2
General	Turboprop	CNA208**	22.0	0.1	22.0	1.0	1	1	44.3
Aviation		BEC58P	5.8	<0.1	5.8	<0.1	1	1	11.7
	Piston	CNA172	4.0	<0.1	4.1	<0.1	14.1	<0.1	22.2
	PISTOII	GASEPF	0.3	1	0.3	<0.1	12.5	<0.1	13.2
		GASEPV	1.0		1.0				2.1
	Subt	total	34.5	0.5	33.7	1.2	26.2	<0.1	96.6
		767300	<0.1	<0.1	<0.1	1	1	1	<0.1
		767CF6	<0.1	<0.1	<0.1	<0.1	1	1	<0.1
	Jet	777200	<0.1	<0.1	<0.1	<0.1			<0.1
Military		F16PW0**	2.2		2.2				4.3
		F-18**	0.2		0.2			-	0.5
	Turboprop	C130AD	0.1		0.1	-		1	0.3
	Subt	total	1.2	<0.1	1.2	<0.1	2.7	-	5.2
	Total		58.3	9.9	59.5	8.6	27.8	<0.1	164.3

^{**} Local operations flown by Skydive Guam and military fighter aircraft are modeled as local arrival and departure operations

Table 5. Modeled 2029 Average Annual Day Operations

Source: GIAA Master Plan 2023

	Engine	AEDT	Arri	vals	Depa	rtures	Lo	cal	
Category	Type	Туре	Day	Night	Day	Night	Day	Night	Total
		737800	17.3	8.3	20.2	5.4	1.9		53.0
		7378MAX	<0.1	-	<0.1	-			<0.1
		747400	0.2	<0.1	0.2	<0.1		-	0.4
		7478	0.1		<0.1	<0.1			0.1
		757PW	1.0	0.1	0.9	0.2			2.2
	1-4	7673ER	0.3		0.3				0.5
Air	Jet	777200	0.4	<0.1	0.4	<0.1			0.8
Carrier		7773ER	3.1	0.4	2.8	0.7			6.9
		A321-232	0.8	2.3	0.9	2.2			6.1
		A330-301	1.6	<0.1	1.6	<0.1			3.2
		MD11GE	0.2		<0.1	0.1			0.3
		MD11PW	0.1	<0.1	<0.1	<0.1			0.1
	Turboprop	C130	<0.1	<0.1	<0.1	<0.1			<0.1
	Subt	total	25.1	11.3	27.4	8.9	1.9		74.5
	lak	FAL900EX	<0.1	<0.1	<0.1	<0.1			<0.1
	Jet	GIIB	<0.1	<0.1	<0.1	<0.1			<0.1
Air Taxi	Turboprop	CNA208	0.2	-	0.2	<0.1			0.4
	Piston	BEC58P	0.4	<0.1	0.4	<0.1			0.7
	Subtotal		0.6	<0.1	0.6	<0.1			1.1
		CNA55B	<0.1		<0.1	<0.1	-		<0.1
	Jet	CNA680	<0.1	-	<0.1				<0.1
	Jet	GV	0.9	0.2	0.8	0.3	1		2.1
		LEAR35	1.0	0.1	1.0	0.1	-		2.3
General	Turboprop	CNA208**	34.5	0.2	33.3	1.4	1		69.3
Aviation		BEC58P	8.2	<0.1	8.2	<0.1	1	1	16.4
	Piston	CNA172	6.6	0.2	6.7	<0.1	21.6	<0.1	35.0
	PISTOII	GASEPF	0.5	1	0.5	<0.1	19.3	<0.1	20.3
		GASEPV	1.1	-	1.1				2.3
	Subt	total	52.9	0.7	51.7	1.9	40.9	0.1	148.3
		767300	<0.1	<0.1	<0.1				<0.1
		767CF6	<0.1	<0.1	<0.1	<0.1	1	1	<0.1
	Jet	777200	<0.1	<0.1	<0.1	<0.1			<0.1
Military		F16PW0**	2.2		2.2				4.3
		F-18**	0.2		0.2				0.5
	Turboprop	C130AD	0.1		0.1				0.3
	Subt	2.6	<0.1	2.6	<0.1			5.2	
	Total		81.1	12.1	82.3	10.8	42.7	0.1	229.2

^{**} Local operations flown by Skydive Guam and military fighter aircraft are modeled as local arrival and departure operations

3.0 Aircraft Noise and Performance Characteristics

AEDT requires the use of specific noise and performance data for each aircraft type operating at the airport. Noise data is in the form of Sound Exposure Level (SEL) at a range of distances (from 200 feet to 25,000 feet) from a particular aircraft with engines at a range of thrust levels. Performance data include thrust, speed and altitude profiles for takeoff and landing operations. The AEDT database contains standard noise and performance data for over 300 fixed-wing aircraft types, most of which are civilian aircraft.

Aside from identifying the aircraft type in the database, AEDT has STANDARD and International Civil Aviation Organization (ICAO) aircraft flight profiles for takeoffs, landings, and flight patterns or touch-and-go operations. HMMH evaluated four of the main ANP types in use at the Airport and determined that all U.S. based carriers typically use STANDARD profiles and all international carriers typically use ICAO-A profiles. Therefore, the departure profiles in AEDT were assigned to each aircraft type based on use by U.S. based (STANDARD) or international carriers (ICAO-A if available) in AEDT for all civilian aircraft types in the existing and forecast conditions. In the database, each aircraft type may have multiple departure flight profiles representing specific ranges of takeoff weights.

AEDT uses departure "stage length" (the flight distance between the departure and arrival airport) as a surrogate for aircraft departure weight, since fuel load is the largest factor affecting variation in aircraft weight and therefore climb performance. AEDT includes performance profiles for most commercial aircraft types for a range of stage length values; however, smaller aircraft types have only a single representative weight used for all operations, identified as stage length 1.

The stage lengths determined for the Airport operations are based on the city-pair analysis of the 12-month radar data sample. **Table 6** indicates the proportion of the operations that fell within each of the stage length categories for existing conditions. Typically, widebody aircraft which operate on long haul routes have higher stage lengths.

Table 6. Existing and Future Conditions Departure Stage Length Usage *Source: FlightAware*

Time of	Airline	AEDT Turo				Stage	Length				Total
Day	Airline	AEDT Type	1	2	3	4	5	6	7	8	Total
	United Airlines	737800	18%	15%	66%	1%	0%	0%	0%	0%	100%
		7773ER	0%	0%	0%	29%	64%	0%	6%	<1%	100%
	Jeju Air	737800	0%	0%	28%	72%	0%	0%	0%	0%	100%
	lin Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Jin Air	777200	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Korean Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
Day		7773ER	0%	0%	0%	100%	0%	0%	0%	0%	100%
		A330-301	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Philippine Airlines	A321-232	0%	0%	100%	0%	0%	0%	0%	0%	100%
	T'way Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Air Seoul	A321-232	0%	0%	0%	100%	0%	0%	0%	0%	100%
	lonon Airlines	737800	0%	0%	100%	0%	0%	0%	0%	0%	100%
	Japan Airlines	7673ER	0%	0%	100%	0%	0%	0%	0%	0%	100%

Time of						Stage	Length				Total
Day	Airline	AEDT Type	1	2	3	4	5	6	7	8	Total
	Asia Pacific Airlines	757PW	<1%	23%	12%	29%	35%	0%	0%	0%	100%
		7378MAX	0%	0%	0%	0%	100%	0%	0%	0%	100%
		747400	0%	0%	0%	46%	46%	0%	7%	0%	100%
		7478	0%	0%	0%	77%	0%	23%	0%	0%	100%
		767300	0%	0%	0%	100%	0%	0%	0%	0%	100%
		767CF6	100%	0%	0%	0%	0%	0%	0%	0%	100%
		777200	0%	0%	0%	100%	0%	0%	0%	0%	100%
		BEC58P*	100%	0%	0%	0%	0%	0%	0%	0%	100%
	Other	C130	0%	100%	0%	0%	0%	0%	0%	0%	100%
		C130AD*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		CNA172*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		CNA208*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		CNA55B*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		CNA680*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		F16PW0*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		F-18*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		FAL900EX	0%	0%	0%	71%	29%	0%	0%	0%	100%
		GASEPF*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		GASEPV*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		GIIB*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		GV*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		LEAR35*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		MD11GE	0%	0%	0%	100%	0%	0%	0%	0%	100%
		MD11PW	0%	0%	0%	2%	98%	0%	0%	0%	100%
Time of	Airline	AEDT Type				Stage	Length				Total
Day			1	2	3	4	5	6	7	8	
	United Airlines	737800	6%	32%	58%	3%	<1%	0%	0%	0%	100%
		7773ER	0%	0%	0%	12%	85%	0%	3%	0%	100%
	Jeju Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Jin Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
		777200	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Korean Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
		A330-301	0%	0%	0%	100%	0%	0%	0%	0%	100%
Night	Philippine Airlines	A321-232	0%	0%	100%	0%	0%	0%	0%	0%	100%
•	T'way Air	737800	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Asia Pacific Airlines	757PW	0%	9%	30%	32%	28%	0%	0%	0%	100%
		747400	49%	0%	0%	51%	0%	0%	0%	0%	100%
		7478	0%	0%	0%	100%	0%	0%	0%	0%	100%
	Other	767CF6	100%	0%	0%	0%	0%	0%	0%	0%	100%
	7 B	777200	0%	0%	0%	100%	0%	0%	0%	0%	100%
		BEC58P*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		C130	0%	100%	0%	0%	0%	0%	0%	0%	100%

Time of	A tultura	Airline AEDT Type				Stage	Length				Takal
Day	Airiine	AEDT Type	1	2	3	4	5	6	7	8	Total
		CNA172*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		CNA208*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		CNA55B*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		FAL900EX	0%	0%	0%	75%	25%	0%	0%	0%	100%
		GASEPF*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		GIIB*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		GV*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		LEAR35*	100%	0%	0%	0%	0%	0%	0%	0%	100%
		MD11GE	0%	0%	0%	100%	0%	0%	0%	0%	100%
		MD11PW	0%	0%	0%	89%	11%	0%	0%	0%	100%
*AEDT types	that have only one stag	ge length in AE	DT								

4.0 Runway Utilization

The primary factor affecting runway use at airports is weather; specifically, the wind direction and wind speed. Trade winds are dominant in Guam throughout the year, which usually blow from an easterly direction. An additional factor that may affect runway use includes the position of the facility or ramp relative to the runway.

HMMH utilized data obtained from FlightAware from July 2022 to June 2023 to compile runway use tables. Due to the ongoing runway rehabilitation project on Runway 6L/24R, we used the 12-month period to develop the annual average flow of the airport (northeast or southwest) and then used the split between the parallels from the four months both runways were open and applied it to the whole year to develop an average annual condition.

HMMH categorized this information by arrival, departure, or circuits (pattern training flights), as well as day and night. HMMH separated the data by category as well as engine type (i.e. jet, non-jet) since these categories of aircraft types may use the runways differently. **Table 7** presents the runway utilization rates developed for the existing conditions. The runway utilization rates in **Table 7** will be used for the development of both 2024 and 2029 aircraft noise exposure contours in the NEM.

Table 7. Runway Utilization for Fixed-Wing Aircraft
Source: FlightAware

Category	Propulsion	Operation	Time of Day		Runv	way		Total
	Class	Туре		6L	6R	24L	24R	
			Day	90.3%	3.0%	0.2%	6.4%	100.0%
		Arrivals	Night	96.5%	2.5%	<0.1%	0.9%	100.0%
			Day	87.1%	2.5%	0.3%	10.1%	100.0%
	Jet	Departures	Night	89.0%	1.9%	0.2%	8.9%	100.0%
Air Carrier		Circuits	Day	89.4%			10.6%	100.0%
Air Carrier		Circuits	Night					
		Arrivals	Day	90.3%	3.0%	0.2%	6.4%	100.0%
	Non-jet	Arrivais	Night	96.5%	2.5%	<0.1%	0.9%	100.0%
	Non-jet	Departures	Day	87.1%	2.5%	0.3%	10.1%	100.0%
		Departures	Night	89.0%	1.9%	0.2%	8.9%	100.0%
		Arrivals	Day	85.3%	7.8%	0.6%	6.4%	100.0%
	Jet	Airivais	Night	68.3%	27.3%	1.2%	3.1%	100.0%
	Jec	Departures	Day	69.7%	21.8%	2.0%	6.5%	100.0%
Air Taxi		Departures	Night	86.9%	9.7%	0.3%	3.1%	100.0%
All laxi		Arrivals	Day	79.1%	12.1%	1.2%	7.7%	100.0%
	Non-jet	Arrivais	Night	86.8%	13.2%			100.0%
	Non-jet	Donarturos	Day	81.8%	11.7%	0.8%	5.7%	100.0%
		Departures	Night	87.5%	12.5%			100.0%
		Arrivals	Day	85.3%	7.8%	0.6%	6.4%	100.0%
	Jet	Arrivais	Night	68.3%	27.3%	1.2%	3.1%	100.0%
	Jec	Departures	Day	69.7%	21.8%	2.0%	6.5%	100.0%
		Departures	Night	86.9%	9.7%	0.3%	3.1%	100.0%
General		Arrivals	Day	86.8%	6.7%	0.5%	6.0%	100.0%
Aviation		Arrivais	Night	92.8%	7.2%			100.0%
	Non-jet	Donarturos	Day	75.2%	18.6%	1.2%	5.0%	100.0%
	Non-jet	Departures	Night	82.1%	13.7%	0.6%	3.6%	100.0%
		Circuits	Day	56.5%	39.2%	4.4%		100.0%
		Circuits	Night	53.6%	42.8%	3.6%		100.0%
		Arrivals	Day	90.3%	3.0%	0.2%	6.4%	100.0%
	lot	ATTIVAIS	Night	96.5%	2.5%	<0.1%	0.9%	100.0%
	Jet	Donartures	Day	87.1%	2.5%	0.3%	10.1%	100.0%
Military		Departures	Night	89.0%	1.9%	0.2%	8.9%	100.0%
ivillically		Arrivala	Day	90.3%	3.0%	0.2%	6.4%	100.0%
	Non-jet -	Arrivals	Night	96.5%	2.5%	<0.1%	0.9%	100.0%
	ivon-jet	Departures	Day	87.1%	2.5%	0.3%	10.1%	100.0%
		•	Night	89.0%	1.9%	0.2%	8.9%	100.0%
Note: Totals ma	y not match exa	ctly due to roundi	ng					

5.0 Flight Track Geometry and Use

The flight tracks for 2024 and 2029 used in the noise modeling were developed from the FlightAware data for the year of data from July 2022 to June 2023. No change in flight tracks or their usage is expected within the five-year forecast period of this project.

For civilian operations, HMMH used an industry-standard method to develop model flight tracks that entails analyzing all radar data for the Airport by splitting the flight tracks into similar and manageable groups. The standard procedure separates tracks by operation type, (i.e. arrival, departure, circuit) and runway end, aircraft type (i.e. jet, piston prop, turboprop, helicopter) and destination/direction. HMMH analyzed flight tracks with the same operation type, runway end, and destination direction for similar geometry and this resulted in the final radar track bundles used to create model tracks. Geometrically similar groups with wide dispersion have a 'backbone' track and one, two, or three 'dispersion' sub tracks on either side of the backbone, for three, five, or seven total tracks (e.g. one backbone and two, four, or six sub tracks).

Appendix A includes all model tracks in **Figure 2** through **Figure 24**. The figures include a Flight Track Analysis boundary that depicts the 30,000-ft minimum flight track depiction distance required by Part 150.⁴ All model track bundles developed as part of this process and the assigned model percent usage are shown in **Table 8** through **Table 11**. The backbone and dispersion tracks are listed as one master bundle name below.

Table 8 presents the flight track use for air carrier passenger jet arrivals and departures separated by airline regions. **Table 9** presents the flight track use for air carrier cargo jet, air taxi, general aviation, and military transient jet arrivals and departures. The jet arrival flight tracks identified in **Table 8** and **Table 9** are depicted in **Figure 2** through **Figure 5**. The jet departure flight tracks identified in **Table 8** and **Table 9** are depicted in **Figure 6** through **Figure 9**.

Table 8. AEDT Modeled Itinerant Air Carrier Passenger Jet Model Flight Track Utilization

Source: FlightAware

		Air C							Air Carrier Passenger					
Operation Type	Runway	Figure Number	Track Group	United Airlines		Northeast Asia Airlines		Southeast Asia Airlines		Other Airlines				
				Day	Night	Day	Night	Day	Night	Day	Night			
Arrivals			AJ06L01	<1%						4%				
			AJ06L02	82%	98%	100%	100%	100%	100%	96%	100%			
	6L	Figure 2	AJ06L03	3%		<1%								
			AJ06L04	7%	<1%									
			AJ06L05	7%	1%									
			AJ06R01	<1%										
			AJ06R02	<1%										
			AJ06R03	<1%										
	6R	Figure 3	AJ06R04	84%	98%	100%	100%	100%	100%	100%	100%			
			AJ06R05	2%	<1%	<1%								
			AJ06R06	4%										
			AJ06R07	7%	2%	<1%								

⁴ 14 CFR Part 150 Section A150.103(b)(1)

						ı	Air Carrier	Passenge	r		
Operation Type	Runway	Figure Number	Track Group	United	Airlines	Northe: Airli		Southe: Airli		Other /	Airlines
				Day	Night	Day	Night	Day	Night	Day	Night
	24L	Figure 4	AJ24L01	100%	100%	100%	100%	100%	100%	100%	100%
	24R	Figure 5	AJ24R01	100%	100%	100%	100%	100%	100%	100%	100%
Departures			DJ06L01	1%	3%	3%	12%				
			DJ06L02	6%	1%	<1%	<1%	29%	70%	23%	100% 100% 100% 19% 19% 13% 6% 13% 13% 13% 20% 20% 20% 20% 50%
			DJ06L03	<1%				14%	4%		
			DJ06L04	1%	<1%	<1%	<1%	36%	4%		
			DJ06L05	3%	22%	<1%	<1%		3%		
			DJ06L06	<1%	2%	<1%			7%	9%	
	C.I.	F: 6	DJ06L07	3%						5%	6%
	6L	Figure 6	DJ06L08	11%	5%	<1%			1%	18%	13%
			DJ06L09	2%	5%	2%	1%			5%	6%
			DJ06L10	6%	14%	<1%	1%			9%	13%
			DJ06L11	13%	5%	9%	8%				13%
			DJ06L12	6%	3%	8%	1%		1%		
			DJ06L13	37%	36%	64%	55%	21%	9%	27%	13%
			DJ06L14	8%	5%	12%	19%		1%	5%	19%
			DJ06R01	2%	3%	8%	13%				
			DJ06R02	3%	1%	<1%	<1%		<1%	7%	
			DJ06R03	6%	<1%	<1%		30%	33%		20%
			DJ06R04	<1%		<1%	1%				
			DJ06R05	1%	1%	<1%			6%	7%	40%
			DJ06R06	2%	15%	<1%	<1%	30%	20%		
			DJ06R07	2%	4%	<1%			18%	13%	
	c D	Fi 7	DJ06R08	9%	4%	1%			<1%		20%
	6R	Figure 7	DJ06R09	1%	2%	<1%				7%	
			DJ06R10	5%	3%	7%	2%		<1%		
			DJ06R11	8%	9%	<1%	2%		<1%	27%	
			DJ06R12	47%	40%	60%	70%	20%	12%	20%	20%
			DJ06R13	2%	3%	8%	1	1	<1%	-	1
			DJ06R14	2%	1%	<1%	1	10%	6%	-	1
			DJ06R15	<1%	2%	<1%	-	10%	2%	7%	1
			DJ06R16	10%	10%	10%	11%			13%	
			DJ24L01	5%	12%	1%				33%	50%
			DJ24L02	5%	6%						
			DJ24L03	5%	1%	<1%			7%	33%	
	24L	Figure 8	DJ24L04	17%	52%	4%		100%	47%	33%	
			DJ24L05	19%	10%	7%	17%		43%		50%
			DJ24L06	5%	1%	5%	8%		3%		
]	DJ24L07	16%	9%	76%	75%				

		Figure Number		Air Carrier Passenger								
Operation Type	Runway			United Airlines		Northeast Asia Airlines		Southeast Asia Airlines		Other Airlines		
				Day	Night	Day	Night	Day	Night	Other Airlines Day Night 33% 50% 33% 50%		
			DJ24L08	25%	4%	6%	-	-				
			DJ24L09	3%	4%							
			DJ24R01	34%	50%			100%	93%	33%		
			DJ24R02	17%	5%	30%	8%					
			DJ24R03	17%		10%	17%				50%	
	24R	Figure 9	DJ24R04	17%	27%	59%	75%					
			DJ24R05	5%	12%	1%				33%	50%	
			DJ24R06	5%	6%							
			DJ24R07	5%	1%	<1%			7%	33%		
Note: Totals	may not mat	ch exactly d	ue to roundi	ing								

Table 9. AEDT modeled Itinerant Jet Model Flight Track Utilization

Source: FlightAware

				Air	Carrier Car	rgo & Milita	iry	Air Taxi & Genera		
Operation Type	Runway	Figure Number	Track Group	Asia Pacif	ic Airlines	Other Ai Mili		Ali Taxi d Avia		
				Day	Night	Day	Night	Day	Night	
			AJ06L01	11%						
			AJ06L02	89%	100%	100%	100%	100%	100%	
	6L	Figure 2	AJ06L03							
			AJ06L04							
			AJ06L05							
			AJ06R01				-	1%		
Arrivals			AJ06R02	6%			-			
Arrivais			AJ06R03	6%			-	1%	-	
	6R	Figure 3	AJ06R04	88%	100%	100%	100%	97%	100%	
			AJ06R05	<1%			-	-	-	
			AJ06R06				-		-	
			AJ06R07							
	24L	Figure 4	AJ24L01	100%	100%	100%	100%	100%	100%	
	24R	Figure 5	AJ24R01	100%	100%	100%	100%	100%	100%	
			DJ06L01			4%	26%		-	
			DJ06L02			7%	5%	13%	-	
			DJ06L03				-	7%	-	
Departures	6L	Figure 6	DJ06L04			4%				
			DJ06L05	16%		2%		20%		
			DJ06L06	3%		4%		7%		
			DJ06L07	3%	50%				11%	

				Air	· Carrier Car	go & Milita	ıry	A: : 0	
Operation Type	Runway	Figure Number	Track Group	Asia Pacif		Other Ai	rlines &	Air Taxi 8 Avia	
"				Day	Night	Day	, Night	Day	Night
			DJ06L08	31%	13%		5%	20%	22%
			DJ06L09	25%	38%	11%	11%		11%
			DJ06L10	13%		25%		27%	22%
			DJ06L11			11%	11%		11%
			DJ06L12			2%			
			DJ06L13	6%		16%	26%		22%
			DJ06L14	3%		15%	16%	7%	
			DJ06R01			6%	2%		
			DJ06R02		2%	3%	4%		
			DJ06R03	<1%	2%	13%	4%	6%	
			DJ06R04						5%
			DJ06R05	3%					11%
			DJ06R06	4%				11%	16%
	6R		DJ06R07	7%	5%	6%		7%	11%
			DJ06R08	34%	19%	3%		26%	
		Figure 7	DJ06R09	17%	14%			6%	5%
			DJ06R10	3%		6%			
			DJ06R11	17%	12%	3%		20%	16%
			DJ06R12	3%	24%	31%	60%	17%	32%
			DJ06R13			3%	13%		
			DJ06R14	<1%	5%		2%	1%	
			DJ06R15					1%	
			DJ06R16	11%	17%	25%	15%	4%	5%
			DJ24L01	40%	67%			13%	
			DJ24L02	32%					
			DJ24L03	4%				38%	
			DJ24L04	24%			50%	13%	100%
	24L	Figure 8	DJ24L05		33%	67%		25%	
			DJ24L06						
			DJ24L07				50%	13%	
			DJ24L08			33%			
			DJ24L09						
			DJ24R01	24%			50%	13%	100%
			DJ24R02						
			DJ24R03		33%	67%		25%	
	24R	Figure 9	DJ24R04			33%	50%	13%	
			DJ24R05	40%	67%			13%	
			DJ24R06	32%					
			DJ24R07	4%				38%	

				Air Carrier Cargo & Military				Air Taxi & Genera				
Operation Type	Runway	Figure Number	Track Group	Asia Pacif	ic Airlines	Other Airlines & Military			ntion			
"				Day	Night	Day	Night	Day	Night			
Note: Totals m	Note: Totals may not match exactly due to rounding											

Table 10 presents the flight track use for all civilian propeller and military non-jet arrivals and departures. The arrivals flight tracks identified in **Table 10** are depicted in **Figure 10** through **Figure 13**. The departure flight tracks identified in **Table 10** are depicted in **Figure 14** through **Figure 17**.

Table 10. AEDT modeled Itinerant Non-Jet Fixed Wing Model Flight Track Utilization

Source: FlightAware

Operation Type	Runway	Figure Number	Track Group	Air '	Air Taxi		eral ition	General Aviation Skydive Local	
				Day	Night	Day	Night	Day	Night
Arrivals			AN06L01			1%			
			AN06L02	6%		3%	50%		
			AN06L03	7%		2%			
	6L	Figure 10	AN06L04	74%	100%	87%	50%		
		rigure 10	AN06L05	6%		4%			
			AN06L06	-		1%			
			AN06L07	7%		<1%		1	-
			AN06L08	1		-		100%	100%
			AN06R01	3%		2%		1	-
			AN06R02	11%		6%	50%	1	-
			AN06R03	7%		3%			
	CD.	F: 44	AN06R04	72%	100%	86%	50%		
	6R	Figure 11	AN06R05	2%		1%			
			AN06R06	1%		2%			
			AN06R07	2%		2%			
			AN06R08					100%	100%
			AN24L01			7%			
			AN24L02	5%		4%			
	2.41	F: 42	AN24L03	27%		26%			
	24L	Figure 12	AN24L04	55%		60%			
			AN24L05	14%		4%			
			AN24L06					100%	100%
			AN24R01			32%			
			AN24R02			16%			
	24R	Figure 13	AN24R03	43%		16%			
			AN24R04	43%		32%			
			AN24R05	14%		4%			
Departures	06L	Figure 14	DN06L01	2%		2%			

Operation Type	Runway	Figure Number	Track Group	Air '	Taxi		eral ition	Avia	eral tion e Local
				Day	Night	Day	Night	Day	Night
			DN06L02	16%		9%			
			DN06L03	7%	1	3%		1	1
			DN06L04	74%	100%	45%	100%		
			DN06L05	2%		42%			
			DN06L06					69%	82%
			DN06L07		-			31%	18%
			DN06R01			<1%			
			DN06R02			<1%			
			DN06R03	5%	50%	3%	2%		
			DN06R04	7%		5%	2%		
	06R		DN06R05	20%		11%	3%		
		Figure 15	DN06R06	64%	50%	53%	24%		
			DN06R07	<1%		<1%			
			DN06R08	4%		19%	55%		
			DN06R09			8%	15%		
			DN06R10					67%	88%
			DN06R11					33%	12%
			DN24L01	11%		11%	33%		
			DN24L02	11%		3%			
			DN24L03	6%		9%	33%		
	24L	Figure 16	DN24L04	39%		25%			
			DN24L05	33%		49%	33%	50%	67%
			DN24L06			3%			
			DN24L07					50%	33%
			DN24R01	89%			33%		
	240	Figure 17	DN24R02			86%	33%		
	24R	Figure 17	DN24R03	11%		11%	33%		
			DN24R04			3%			
Note: Totals	may not mat	ch exactly due	e to rounding						

Table 11 presents the flight track use for all civilian local circuits which were modeled in AEDT. The Japan Airlines circuit tracks are shown in **Figure 18** and **Figure 19**. The remaining non-jet circuit tracks identified in **Table 11** are depicted in **Figure 20** through **Figure 22**.

Table 11. AEDT Modeled Local Fixed-Wing Model Flight Track Utilization

Source: FlightAware

Operation Type	Runway	Figure Number	Track Group	Air Carrier Japan Airlines		General Aviation	
				Circuits	6L	Figure 18	CJ06L01
		Figure 20	CN06L01			100%	100%
	6R	Figure 21	CN06R01			55%	85%
			CN06R02			45%	15%
	24L	Figure 22	CN24L01			35%	
			CN24L02			43%	
			CN24L03		-	22%	100%
	24R	Figure 19	CJ24R01	100%	-		
Note: Totals may not match exactly due to rounding							

6.0 Meteorological Conditions

AEDT has several settings that affect aircraft performance profiles and sound propagation based on meteorological data. Meteorological settings include average annual temperature, barometric pressure, and relative humidity at the airport. AEDT holds the following default values for annual average weather conditions at the Airport and these values will be used for all noise modeling:

Temperature: 81.82° F

Sea-level Pressure: 1010.43 millibars

Relative Humidity 80.92%

Dew Point: 75.36° FWind Speed: 8.84 Knots

7.0 Terrain Data

Terrain data describes the elevation of the ground surrounding the airport and on airport property. AEDT uses terrain data to adjust the ground level under the flight paths. The terrain data does not change the aircraft's performance or noise levels but alters the vertical distance between the aircraft and a "receiver" on the ground. This affects assumptions about how noise propagates over ground. HMMH obtained the terrain data from the United States Geological Survey (USGS) National Elevation Dataset with one-third arc second (approximately 33 feet) resolution. Terrain data was utilized in conjunction with the terrain features of the AEDT to generate the noise contours for the existing condition.

APPENDIX A. FLIGHT TRACK FIGURES

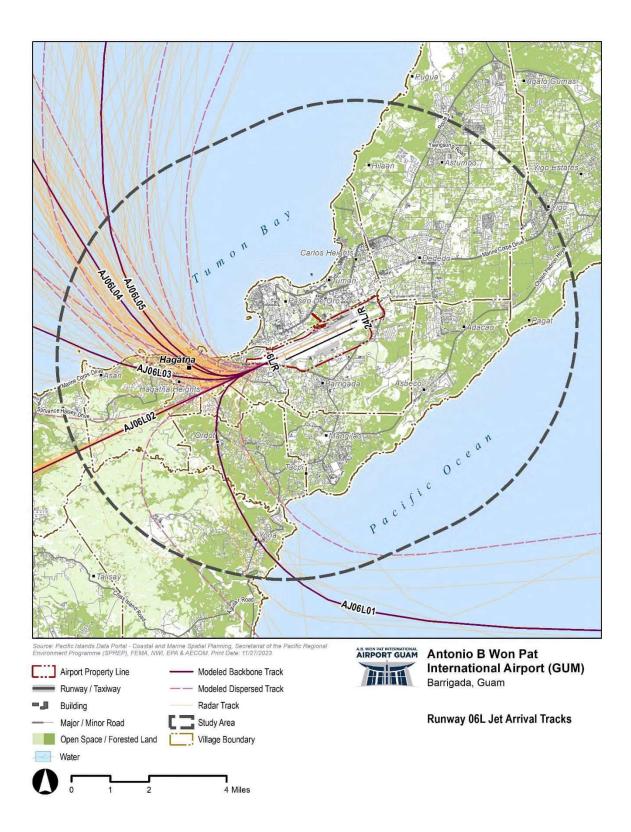


Figure 2. Runway 6L Jet Arrival Flight Tracks

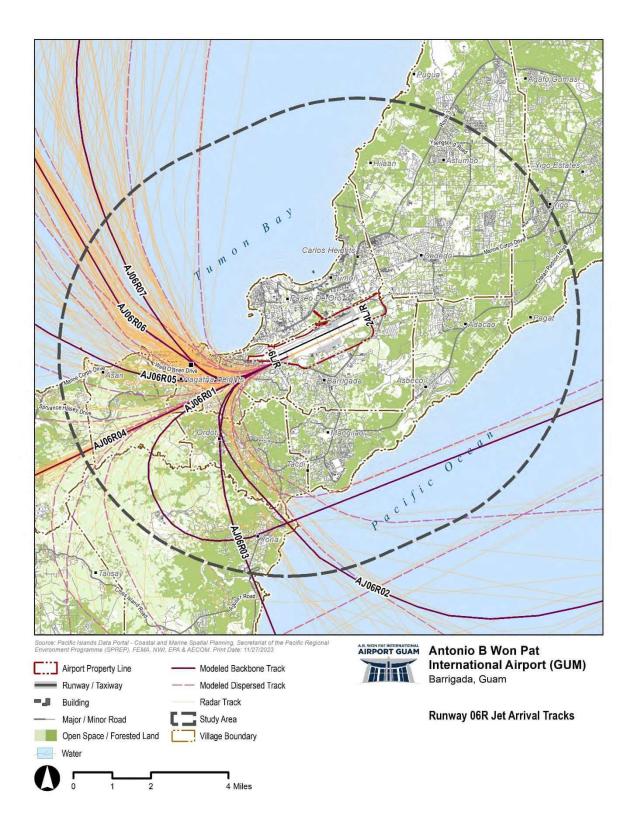


Figure 3. Runway 6R Jet Arrival Flight Tracks

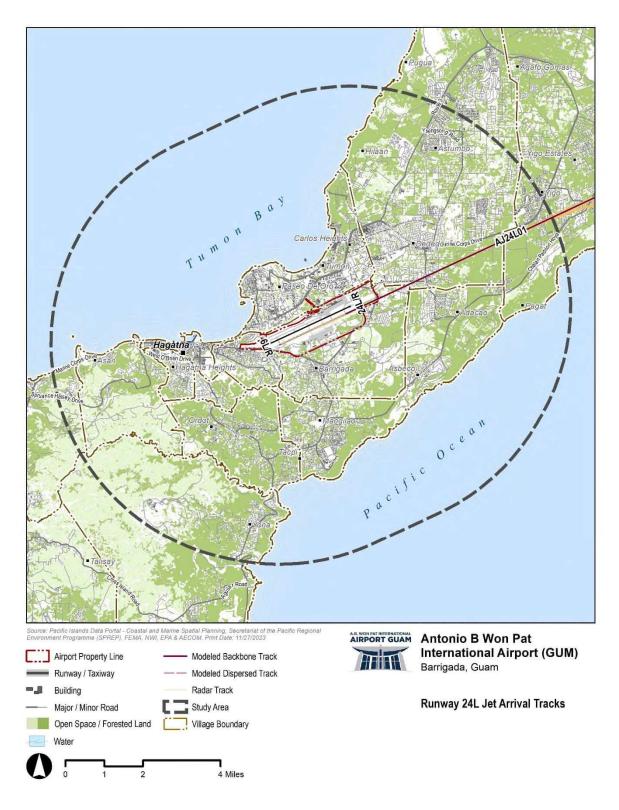


Figure 4. Runway 24L Jet Arrival Flight Tracks

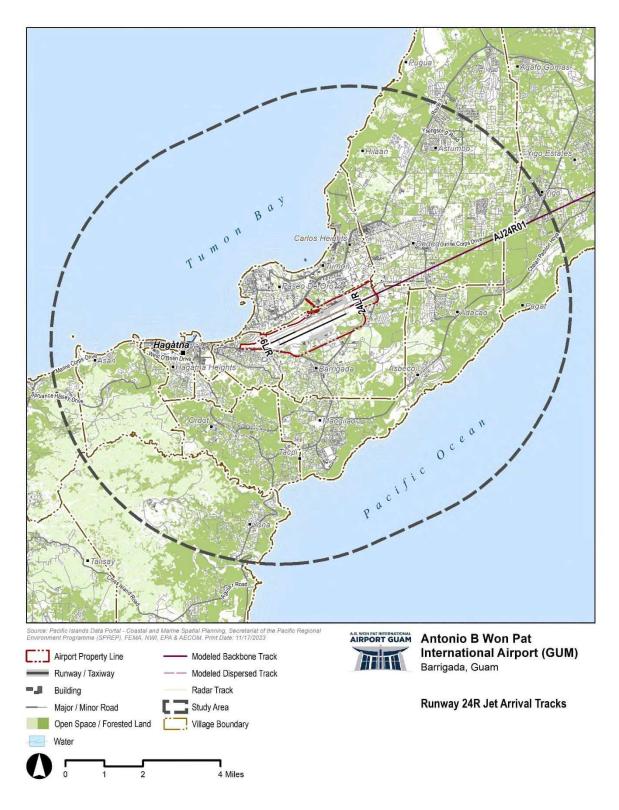


Figure 5. Runway 24R Jet Arrival Flight Tracks

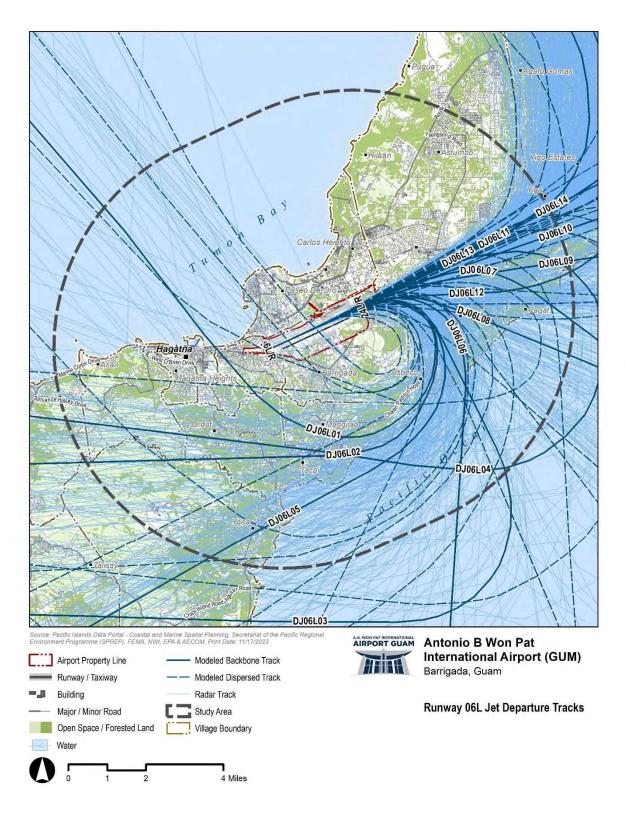


Figure 6. Runway 6L Jet Departure Flight Tracks

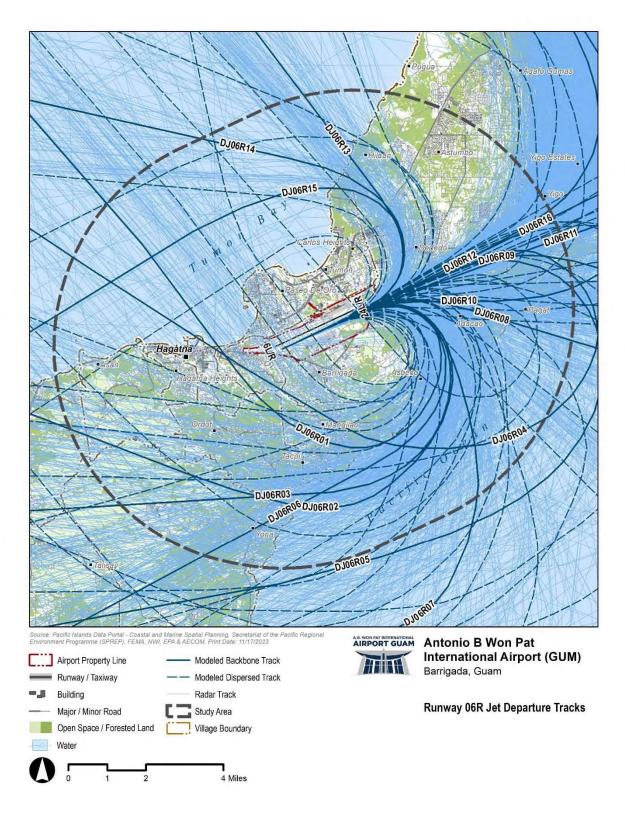


Figure 7. Runway 6R Jet Departure Flight Tracks

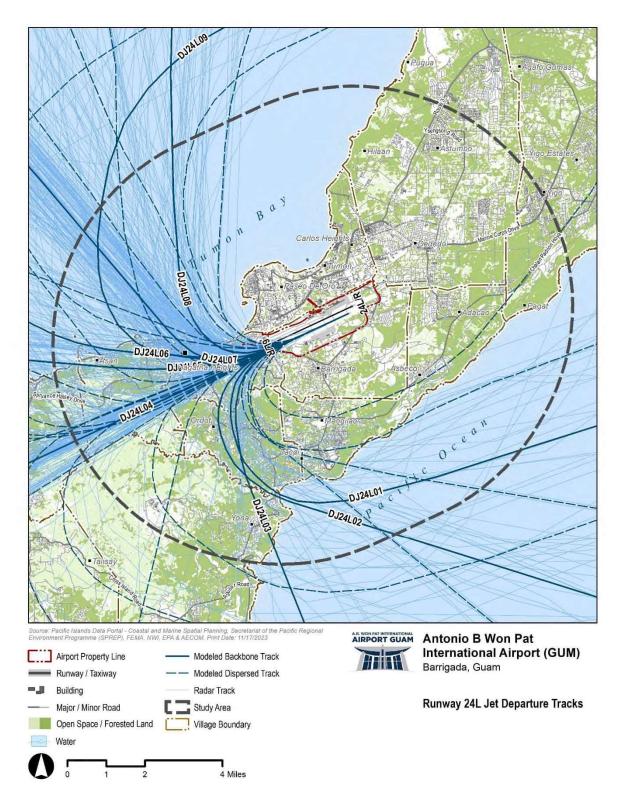


Figure 8. Runway 24L Jet Departure Flight Tracks

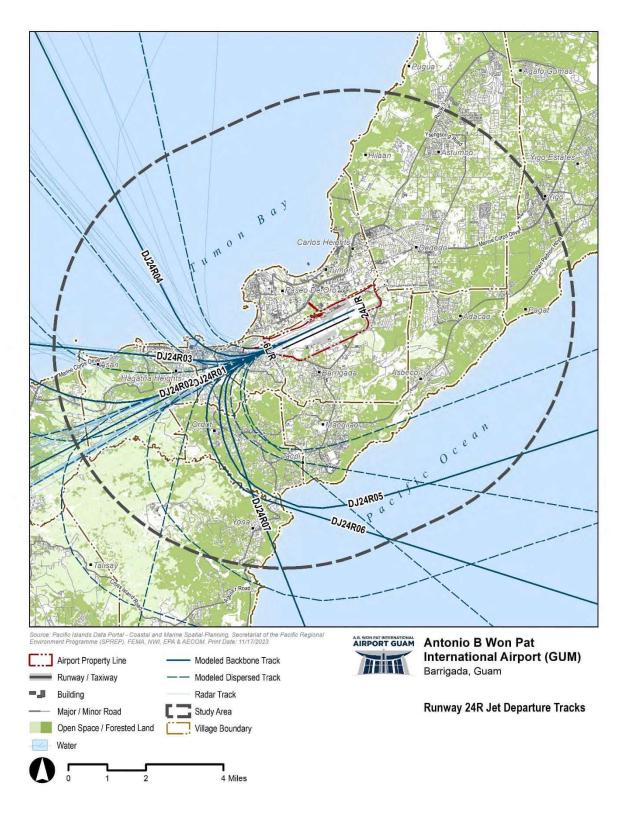


Figure 9. Runway 24R Jet Departure Flight Tracks

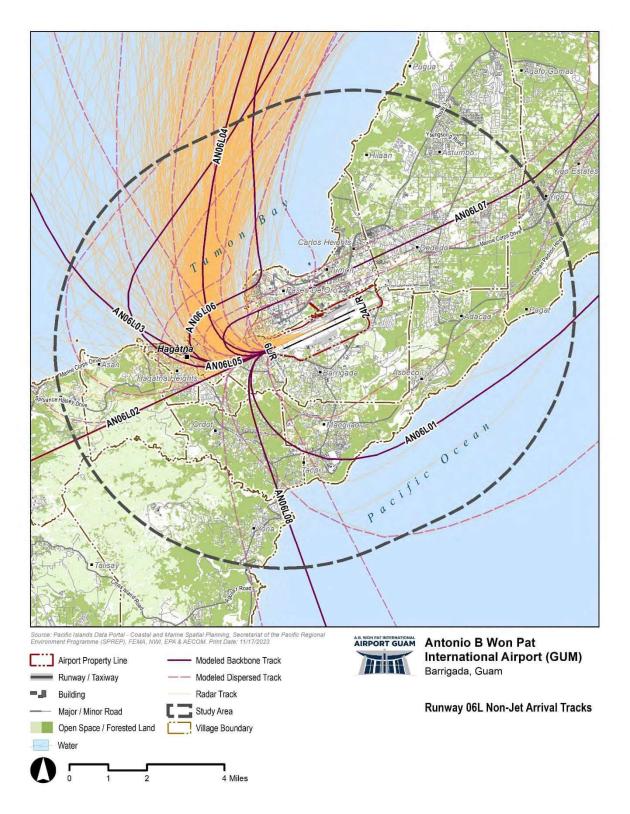


Figure 10. Runway 6L Non-Jet Arrival Flight Tracks

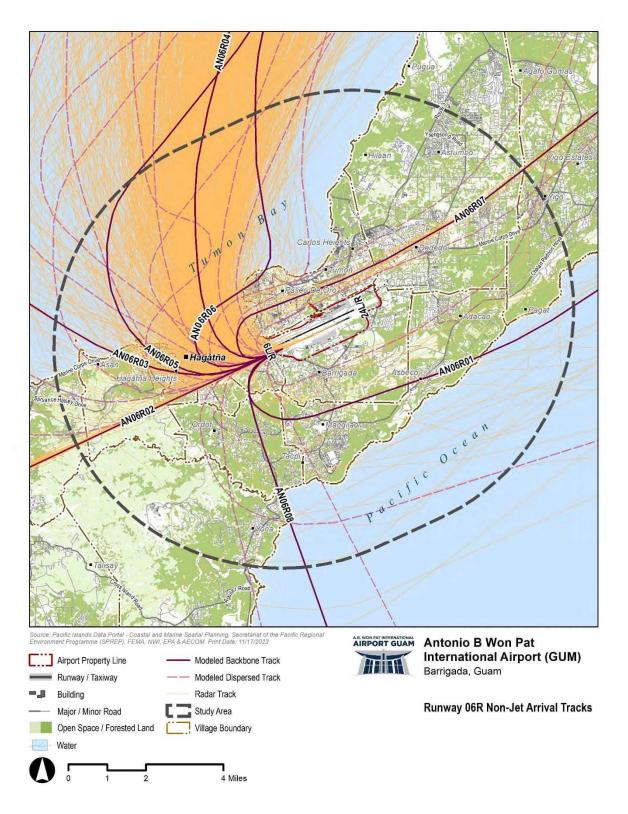


Figure 11. Runway 6R Non-Jet Arrival Flight Tracks

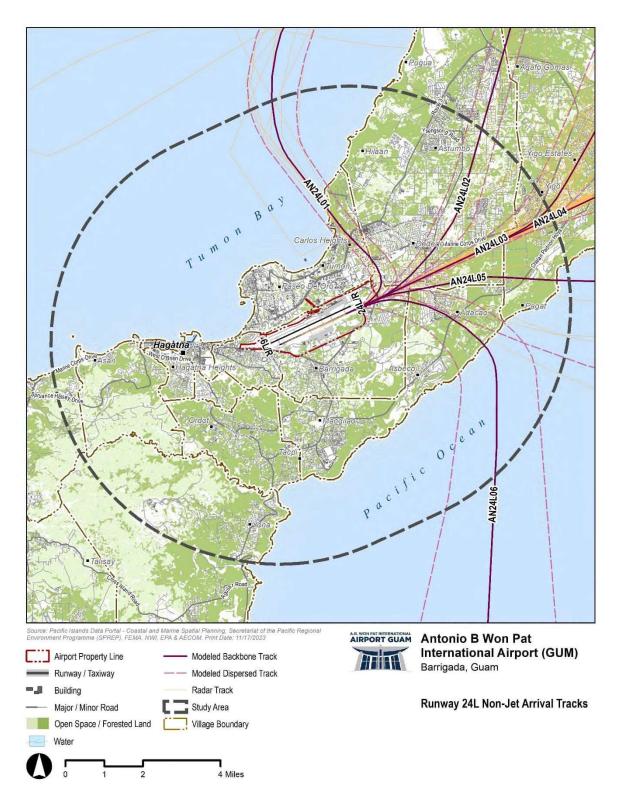


Figure 12. Runway 24L Non-Jet Arrival Flight Tracks

Figure 13. Runway 24R Non-Jet Arrival Flight Tracks

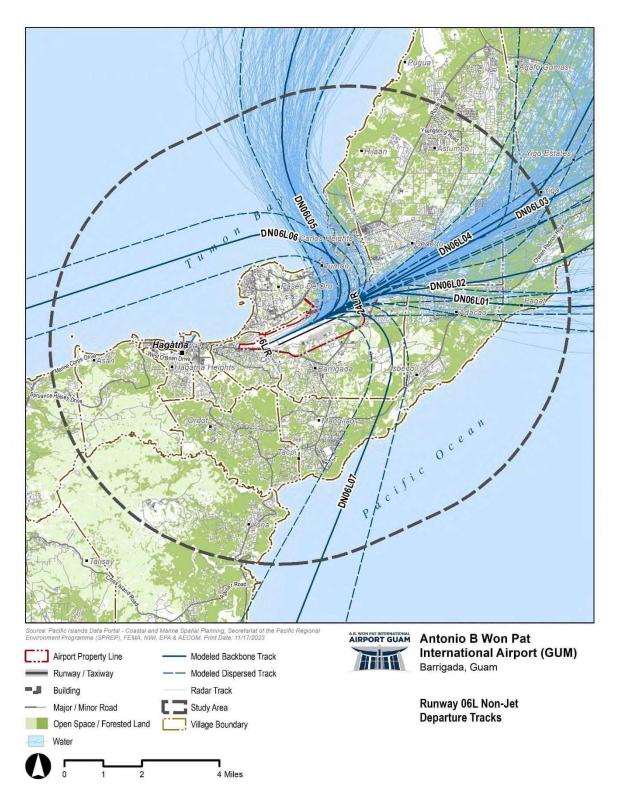


Figure 14. Runway 6L Non-Jet Departure Flight Tracks

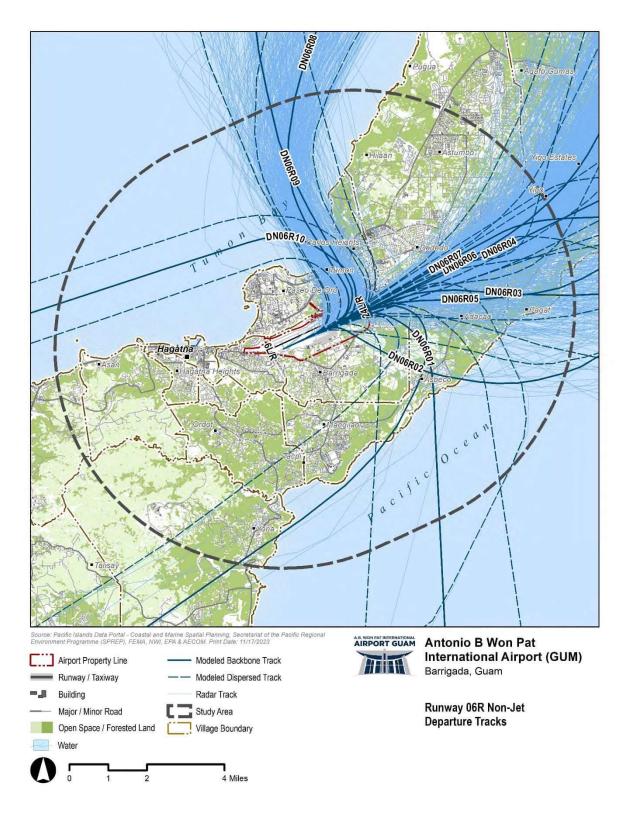


Figure 15. Runway 6R Non-Jet Departure Flight Tracks

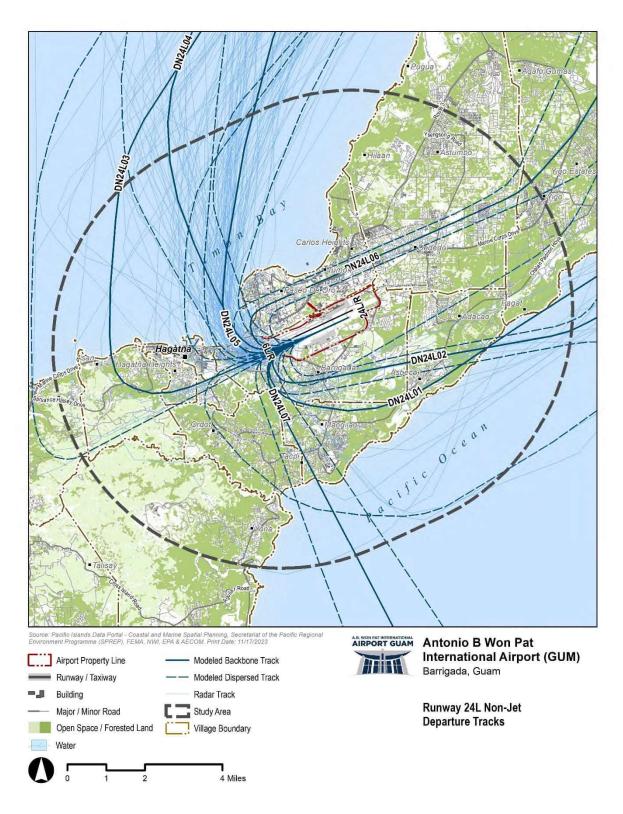


Figure 16. Runway 24L Non-Jet Departure Flight Tracks

Figure 17. Runway 24R Non-Jet Departure Flight Tracks



Figure 18. Runway 6L Jet Circuit Flight Tracks

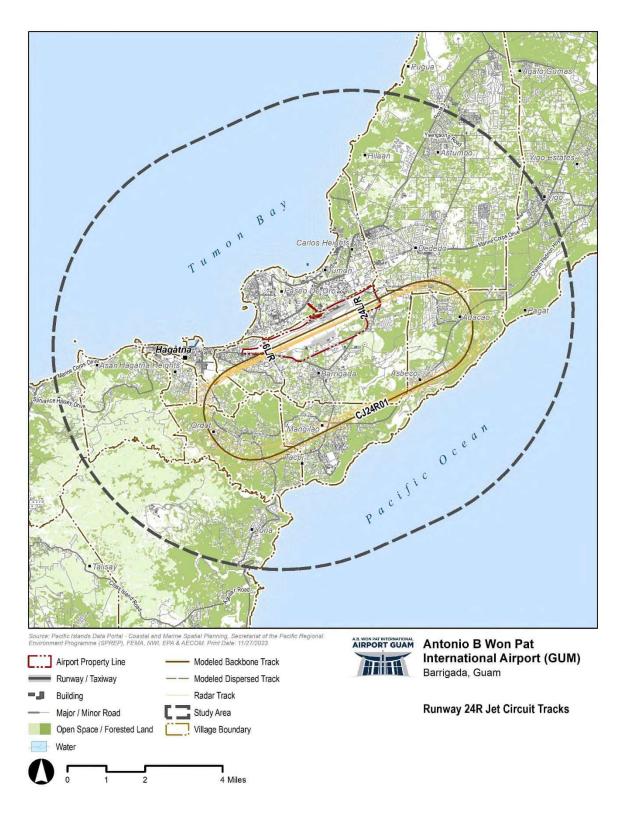


Figure 19. Runway 24R Jet Circuit Flight Tracks

Figure 20. Runway 6L Non-Jet Circuit Flight Tracks

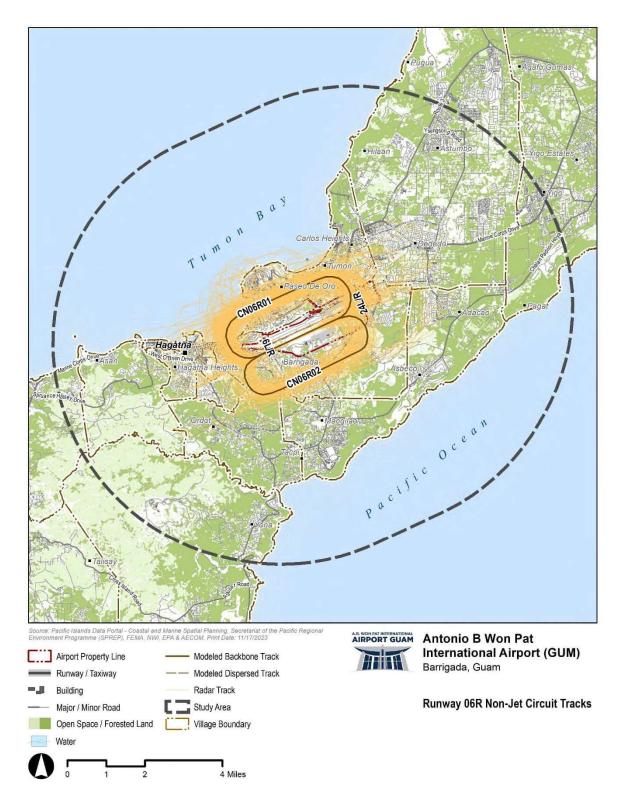


Figure 21. Runway 6R Non-Jet Circuit Flight Tracks

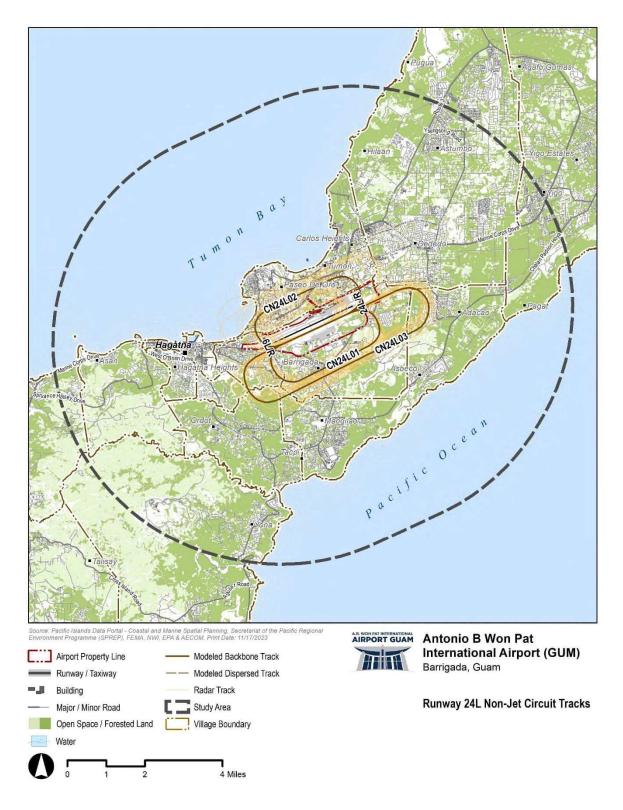


Figure 22. Runway 24L Non-Jet Circuit Flight Tracks